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FOREWORD
The present final report for AFOSR contract number FA9550-09-C-0135 describes the results of an 
STTR Phase I collaboration between Nielsen Engineering and Research (NEAR), Inc. and the Ohio 
State University (OSU).  Dr. Patrick Reisenthel (NEAR) was the Principal Investigator for this effort. 
The OSU team was led by Prof. Theodore Allen.  The present report includes contributions by Mr. 
Daniel Lesieutre (NEAR) and Mr. Soo Ho Lee (OSU), and is a comprehensive stand-alone report of 
the activities conducted as part of this STTR on the development of novel multifidelity modeling and 
optimization approaches applicable to multidisciplinary design and analysis of aerospace vehicles.

In this report, references to “the Team” or “our Team” pertain to the joint NEAR-OSU partnership.  In 
addition to this report, and pending further results to be developed as part of Soo Ho Lee's Ph.D. 
dissertation, our Team intends to submit at least two papers for publication.  The first of these papers, 
targeted for the Journal of Global Optimization, will focus on the single-fidelity version of radial basis 
sequential optimization.  The second paper will be concerned with the multifidelity version and will be 
submitted to Structural and Multidisciplinary Optimization.1  

1.  SUMMARY 
The development of revolutionary aerospace vehicles presents significant challenges.  Cross-disciplinary 
integration offers potentially important advantages early in the design cycle, and to do so accurately and 
efficiently requires merging multiple levels of fidelity within an engineering discipline, as well as 
understanding the necessary degree of coupling between disciplines. 

To address these demands our Team has developed methods and code for a radial basis function-based 
optimization alternative to multifidelity Kriging optimization.  Like the Kriging-based method, our 
code involves more than a single type of simulation model.  The approach can integrate data from 
multiple disciplines and takes into account both the location (in design space) and the fidelity of further 
data acquisition/infill.  

Specifically, a study of radial basis functions in the context of multifidelity optimization is presented, 
including comparisons to prior modeling options and alternatives.  We describe a general multifidelity 
framework and specific methods, including hybrid methods whose convergence is established. 
Numerical results on test problems are used to compare sequential radial basis optimization (SRBO) 
versus other methods.  The results indicate that methods based on radial basis functions can compete with 
Kriging methods in relation to efficiency and repeated identification of global optimum solutions.  As a 
result, our proposed SRBO might be preferred because of reduced computational overhead, improved 
numerical stability, and flexibility in terms of modeling uncertainty intervals.  The example of an 
aeroelastic wing design using two levels of fidelity and two disciplines is used to demonstrate the 
feasibility of the proposed approach.  The report concludes with a discussion of the results and 
opportunities for future research.

Overall, the proposed methods offer substantially reduced computational cost to arrive at the optimum 
solution.  As a result, there is a potential for engineers and researchers to solve more design problems in 
less time and achieve higher quality results at reduced costs.

2.  INTRODUCTION
The development of increasingly more complex and integrated aerospace vehicles that are capable of a 
variety of missions is leading engineers and scientists to consider nonconventional airframes, new 
structural and propulsion concepts and their interactions early in the design cycle.  The technical 

1  We also anticipate at least one paper presentation at an AIAA meeting on the aeroelastic wing design problem.
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challenges faced in the design of these revolutionary air vehicles range from considerations of extreme 
environments (e.g., hypersonic/transatmospheric vehicles) to large dynamic shape variations of micro 
UAVs.  This greater range of design options must be examined in cross-disciplinary terms, where 
individual disciplines are allowed to challenge the constraints of other disciplines.  Cross-disciplinary 
design space exploration is needed to reduce uncertainty and increase knowledge in order to make 
better decisions.  The large dimensionality of such a design space traditionally requires the use of low-
fidelity methods at the conceptual design stage, but there is a need to incorporate high-fidelity analysis 
tools early in the design process.  Mixed fidelity models are an enabling technology, allowing the 
design of individual system components to be understood within the broader context of a full system. 
Increased computational power and the proliferation of new unmanned aerial vehicle designs have 
been driving forces in the development of variable fidelity frameworks over the last decade.  Yet, a 
number of fundamental issues in multifidelity computing remain unresolved.  

Advanced aerospace vehicle design methods must fuse data from multiple sources and various levels 
of fidelity.  In a multifidelity framework, the resolution and fidelity of simulations should be tailored 
to the requirements of the analysis.  There are many factors to consider, including the spatial 
resolution, temporal resolution, physical processes being modeled, the number of objects, number of 
attributes of each object, and the degree of interaction between these objects (Gardner and Hennigan, 
2003).   

High-fidelity methods are typically more expensive, and must be used sparingly out of practical necessity. 
Other factors to consider are that high-fidelity analyses are assumed to be more accurate, but may not 
always be, and that there are often difficulties related to obtaining good gradients.  For example, there 
might be integer/discrete variables associated with gross topological changes, e.g., number of compressor 
stages, number of engines, control surfaces and so on.  These amount to major discontinuities (“cliff 
edges,” in Jarrett's, 2006, terminology) which computationally efficient gradient-based design 
optimization methods cannot cross.

An obvious advantage of low-fidelity methods is that they are computationally inexpensive and fast. 
More rarely mentioned are the potential benefits of low-fidelity methods in a multifidelity framework, 
namely that they enable effective design exploration, not merely because of their speed, but as an aid to 
escape noisy local optima due to the nonsmooth nature of the design space, a common occurrence in the 
case in high-fidelity analyses.  Low-fidelity methods enable safe transit between local optima, effectively 
tunneling back and forth through the cliff edges that discrete variable problems bring about (Jarrett, 
2006).  The disadvantages of low-fidelity tools are that they may produce inaccurate results.  Also, low-
fidelity tools may not work for unconventional designs or strongly nonlinear regimes (Wintzer et 
al., 2006), or may not be able to produce the quantities of interest (e.g., aerodynamic drag).

A significant issue in multidisciplinary frameworks is the difficulty in specifying consistency between 
models.  A low-fidelity and high-fidelity model are said to be weakly consistent if “the projection of the 
state of the higher resolution model to the space of the lower resolution model is sufficiently close to the 
state of the low resolution model” (Gardner and Hennigan, 2003).  In many applications, lower fidelity 
refers to lower resolution, but also different methodologies altogether involving significant 
approximations, not only missing detail but also missing physics (e.g., absence of chemical reactions, 
aeroelastic/unsteady effects, viscosity, or turbulence).  In such cases, one cannot guarantee even weak 
consistency.

True integration of the results from codes of varying fidelity poses a number of challenges.  One of them 
is the fact that prediction codes of varying fidelity levels use different input parameterizations and, 
therefore, operate in different spaces (Robinson et al. 2006a,b).  Another challenge is the development of 
effective strategies when low- and high-fidelity models are not consistent, or when weak consistency is 
satisfied only in a small region of the design space, therefore limiting the efficiency of current 
multifidelity frameworks and, potentially, the breadth of design options being considered.  The question 
of optimal sampling of the design space given limited resources is a critical one that is fundamentally 
linked to the characterization of uncertainty and uncertainty requirements.  Specifically, there is a need to 
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develop rigorous approaches addressing not only where to sample the design space, but also at what level 
of fidelity.   

In the past decade, there have been numerous implementations of variable fidelity ideas based on the 
concept of  “bridge functions” as a re-anchoring framework to correct low-fidelity analyses to 
approximate the results of high-fidelity analyses.  The “beta” factor initially proposed by Chang et al. 
(1993) is introduced as a local multiplicative factor, although many researchers (e.g., Hatanaka et 
al., 2006, Ghoreyshi et al., 2008) have found it advantageous to implement the additive form of the 
correction.  These schemes incorporate Taylor expansion-based corrections between the low- and high-
fidelity models, requiring the design space to be smooth, and require updates where both low- and high-
fidelity data must be available at the same point.  These factors tend to result in relatively frequent high-
fidelity updates and, therefore, only modest improvements in computational savings over conventional 
optimization.  While useful for establishing provable convergence to high-fidelity results/optimization, 
the local correction method has a tendency to limit the step sizes taken in optimization and, more 
generally, curtails the size of the design space exploration.  

As pointed out in Forrester et al. (2009), efficient global optimization revolves around being able to 
successfully balance exploration and exploitation.  Thus, there is a need for a multifidelity framework 
allowing bold optimization steps.  The present work considers both hierarchical2 and integrated3 variable-
fidelity metamodeling methods whose uncertainty is reduced with each evaluation.  In this work, a radial 
basis function embodiment of these ideas is used to benchmark performance versus other methods and to 
demonstrate efficient multifidelity multidisciplinary optimization.  

3.  OBJECTIVES
Aerospace finite element method (FEM) and computational fluid dynamics (CFD) simulations continue 
to increase in fidelity/realism.  Yet, even as computer speeds increase, the most realistic models (e.g., of 
turbulent flows) are still relatively slow computationally, making thorough optimization difficult.  In fact, 
the gap between the computational speed of low-fidelity models and high-fidelity models continues to 
increase also.  As a result, methods for multifidelity optimization which leverage efficient low-fidelity 
models promise to enable thorough optimization.

In the years following Jones, Schonlau, and Welch (1998), there has been growing interest in 
optimization using global metamodels, e.g., Kriging or radial basis functions.  Unlike other design of 
experiments (DOE) methods like sequential response surface methods, global metamodels can 
integrate and generate predictions over the entire design space.  As a result, they can integrate an 
entire data set from an entire design optimization process which can involve human participation in 
the process.  Nonglobal metamodeling approaches for multifidelity optimization are described in 
Singh and Grandhi (2010).  Advances in global metamodeling using radial basis functions include 
Gutmann (2001), Holmström (2008), Floudas and Gounaris (2009), and Antanas (2010).  Our Team's 
selection of the radial basis function approach is based on its suitability for use in efficient global 
optimization and its extension to the multifidelity context (see Section 4).

The broad objective of this work is to pioneer innovative methods for representing, managing, and 
fusing information of various levels of fidelity within an engineering discipline and across multiple 
disciplines for a wide-range of analysis and design tools.  The specific objectives of this study include 
(1) developing a multifidelity multidisciplinary framework through alternative formulations to previous 
methods, computational results, and rigorous mathematical results, (2) extending Huang et al.'s (2006) 
multifidelity design space sampling strategy to manage system updates within integrated and hierarchical 
global metamodeling approaches, (3) extending the rigorous convergence results from Schonlau (1997) to 
multifidelity optimization in the context of radial basis function methods and Kriging models, 

2  also referred to in this work as “cascading model” 
3  referred to in this work as the “augmented dimensionality model”
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(4) developing adaptive methods to achieve probabilistic convergence results and enhance performance. 
The purpose of this STTR Phase I is to demonstrate the feasibility of the proposed approach through its 
application to a baseline problem involving at least two interactive disciplines and two levels of fidelity. 
Therefore, objective (5) is the application of the proposed methods to a flying wing-type UAV design 
function integrating information from structural and fluid models.  

4.  METHODS
This section describes in detail the methods, assumptions, and procedures used in this work.  We begin 
(Section 4.1) with an overview of the optimization process, contrasting the traditional approach and the 
multifidelity framework envisioned in this work.  This is followed (Section 4.2) by a discussion of 
surrogate models, including the rationale for our choice of radial basis functions.  Section 4.3 describes 
the optimization methods, and Section 4.4 documents the computational analyses used in this work.

4.1  OVERVIEW
In the conventional view of the design process, decisions evolve over time.  At the conceptual design 
stage and, increasingly, in preliminary design, a large array of options and cross-disciplinary trades are 
considered, even though the knowledge of the system is necessarily imprecise (Lewis and Mistree, 1998). 
This is traditionally the design space exploration phase, where individual disciplines must be able to 
challenge the constraints of other disciplines (Holden and Keane, 2004) in order to come up with effective 
solutions.  An outcome of these analyses  is, traditionally, to narrow down the design space to smaller, 
more manageable portions which are subsequently investigated in more detail.  The intermediate level of 
fidelity, though more expensive, is then used to refine the analysis, add geometric detail, and increase the 
physical fidelity of the models used, thus reducing the uncertainty in the design.  Cross-disciplinary 
interactions are retained in the MDO methods used, but a smaller portion of the design space is 
considered, to make this tractable in spite of the higher costs.  Finally, the detailed design stage is used to 
further refine the analysis, narrowing the design to a handful of options.  

Figure 1.   Integrated Hierarchical Framework.

In contrast to the conventional view, the proposed multifidelity multidisciplinary framework (illustrated 
in Figure 1) is a true integrated hierarchical model which takes into account (merges) the information 
from multiple fidelity levels and manages this information in order to achieve optimal sampling of the 
design space, both in terms of design variables and level of fidelity.  The right-hand side in Figure 1 
represents analysis codes spanning three hypothetical disciplines, e.g., fluids, structures, and guidance and 
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control.  Each analysis code is represented by a  symbol and is ranked according to its level of fidelity,  
i.e., the level of the physics included in the model and the level of geometric detail.  Within the 
multidisciplinary multifidelity framework, codes with compatible fidelity levels are first coupled together 
using cross-disciplinary links (CDL).  Such groupings are the staple of multidisciplinary optimization 
(MDO) and include not only the code associations but also the nature of the coupling between them. 
Within each group, not only are variables appropriately exchanged between disciplines, but the processes 
for information exchange/update are well-defined.  For example, the disciplines within a group can be 
tightly integrated or loosely coupled, physical interactions accounted for explicitly or through 
subiterations between codes, and so on.    The left-hand side of the figure symbolizes the two key 
elements which underlie the proposed approach.  The first is the merging of all multifidelity data into a 
global probabilistic response surface-based metamodel (see Section 4.2.2).  This “Integrated Hierarchical 
Metamodel” builds on the foundation provided by multifidelity radial basis function (RBF) data fusion 
methods (Reisenthel et al., 2006a), and optimization methods using probabilistic RBF networks (see, e.g., 
Reisenthel and Lesieutre, 2007).  The second element and a key addition to these ideas is the use of a 
Multifidelity Sequential Kriging Optimization (MFSKO)-like “Expected Improvement Function” 
(Section 4.3.4) to manage when high-, medium-, and low-fidelity analysis tools are appropriate as the 
“next move” in design space exploration/exploitation and metamodel updates.  The goal of balancing 
exploration and exploitation in a mathematically rigorous way is achieved by using an integrated criterion 
which determines both the location and fidelity level of subsequent searches.  This criterion is based on 
Kennedy and O'Hagan's (2000) original work, and subsequent refinements by OSU members of our Team 
(Huang et al., 2006, Schenk et al., 2005).   

The work presented in this report focuses primarily on the multifidelity aspects of aerospace vehicle 
analysis and design.  Thus, the “isofidelity”-groupings depicted in Figure 1 represent an encapsulation of 
existing analysis tools, solution methods, and information exchange processes which can operate 
independently of each other.  The central question addressed in this work is how to merge and manage the 
information from these multiple fidelity groupings.  

4.2  SURROGATE MODELS

At the heart of the multifidelity multidisciplinary framework depicted in Figure 1 reside (1) a 
dynamic metamodel and (2) an intelligent management tool.  As shown in Section 4.2.1, the choice of 
surrogate for the metamodel has a number of consequences which must be taken into account. 
Section 4.2.2 details the multifidelity radial basis function surrogate models used in this work.

4.2.1  BACKGROUND/RATIONALE

A summary comparing the pros and cons of four different classes of surrogate-based methods is provided 
in Table 1.  This summary organizes information gleaned in large part from the review papers of 
Forrester et al. (2009) and, to a lesser extent, Queipo et al. (2005), and supplemented with our own 
experience.  The table is organized as follows.  The four classes of methods (polynomial, radial basis, 
Kriging, and support vector regression) are listed across the top, with their attributes listed by row.  These 
key attributes are categorized according to (a) the forming of the metamodel surrogate, (b) considerations 
pertinent to optimization, and (c) multifidelity modeling.  While many of the table entries are qualitative 
(e.g., “Low” vs. “Med. Low”), their intent is to give a sense of the relative performance of one method over 
another.  Whenever possible, this sense of performance is quantified in terms of scaling with respect to 
number of points, search space dimensionality, and so on.  Particular method variants may cross 
boundaries, and not all methods are represented, so this is not intended to be a comprehensive guide but, 
rather, a reference to help explain where the proposed methods (highlighted) fit within the spectrum of 
existing approaches.  
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Table 1.   Characteristics of various surrogate-based methods & assessment of suitability for multifidelity multidisciplinary optimization.

PRG MLS RBF qParam. 
RBF

Param. 
RBF

KRG Blind KRG SVR Param. 
SVR

M
et

am
od

el
 C

on
st

ru
ct

io
n

Assumption requirements High Medium Med. Low Low Low V. Low V. Low Med. Low V. Low

Landscape complexity Low Medium Med. High High High V. High V. High Med. High V. High

Ability to incorporate derivatives Yes Yes Yes Yes Yes Yes Yes Unknown Unknown

Generalization error Medium Low Med. Low Low Low V. Low V. Low Low V. Low

Time spent training or retraining the metamodel Low High Low Low Medium High V. High V. High V. High
Solution effort in terms of number of parameters searched 

(independently of GCV)* 0 0 0 0 1 2k 2k2 + 1 2n 2n + 1

Number of potential regressors, given m data points† md  !
m! d !

md  !
m! d !

m m m m m m m

Maximum number of data points m High V. High < 1000 < 1000 < 1000 < 500 < 500 High High

Estimate# of maximum design space dimensionality k k < 20 k < 20 High High High k < 20 k < 20 High High

Ease of implementation V. High High High High Medium Medium Low Low Low

Possibility of error prediction estimates Yes Yes Yes Yes Yes Yes Yes Yes Yes

Current availability of error estimates Unknown Unknown Yes Yes Unknown Yes Yes Yes Yes

O
pt

im
iz

at
io

n

Adaptivity (ability to fit complex local behavior) Low Medium Medium High High High High Low High

Cost of search Low High Low Low Low Low Low Low Low

Basic effort associated with a 2-stage infill, in terms of 
number of parameters searched (independently of GCV)* 0 0 0 0 1 2k 2k2 + 1 2n 2n + 1

1-stage¶ infill effort in terms of number of parameters 
searched (independently of GCV)* 

Unknown Unknown k + 1 k + 1 k + 2 3k + 1 2k2 + k + 1 2n + k + 1 2n + k + 2

Overall suitability for optimization Med. Low Low Medium High High Med. High Medium Low Low

Suitability for global optimization V. Low Low Medium High High Med. High Medium Unknown Unknown

M
ul

tif
id

el
ity

Approximation model 
or surrogate management framework used

Affine correction 
process
Trust region methods

•low level of complexity 
between fidelity levels
•lack of flexibility in 
terms of point/fidelity 
selection

•Kennedy -
O'Hagan

•Dimensionality
augmentation

+ Least Squares Estimation

•models complex relationships
•flexible point/fidelity selection
•fast

Co-Kriging (Kennedy-
O'Hagan + Kriging)

•potentially high level 
of complexity 
between fidelity levels
•flexible point/fidelity 
selection

Unknown

Notes: * assumes k-dimensional design space and n support vectors
† assumes m data points and polynomial of degree d 

             ¶ (conditional lower bound approach); estimated scaling 
(except KRG, from Forrester et al., 2009).

# Maximum dimensionality for PRG and MLS limited due to large number of regressors; 
maximum dimensionality for KRG and Blind KRG limited due to computational effort; 
potential maximum dimensionality for RBF variants is uncertain, although our Team has 
successfully tested  interpolating RBF solutions of random data in 100+ dimensions.



Nielsen Engineering & Research, Inc. – DoD STTR Topic AF08-BT03 – Contract FA9550-09-C-0135 Final Report
“Development of Multidisciplinary, Multifidelity Analysis, Integration and Optimization of Aerospace Vehicles”

It is important to keep in mind that the applicability or optimality of a given method is problem-
dependent.  Thus, for example, a method which seems unattractive due to computational demands (e.g., if 
it involves layer of optimization upon layer of optimization) may be worth the effort, depending on how 
costly a single high-fidelity evaluation is.  Paradoxically, Forrester et al. (2009) note that, for those very 
applications, i.e., those most likely to be solved in a highly parallel computing environment, “setting up 
and searching a surrogate of any kind can (become the) bottleneck. (...) This fact will always limit the 
amount of time we can dedicate to the building and searching of surrogates.”

In part for this reason, the multifidelity multidisciplinary optimization approach recommended by our 
Team centers on radial basis function (RBF) surrogation, including several of its variants (fixed basis 
RBF, quasi-parametric RBF, and parametric RBF).  As depicted in Table 1, this class of methods appears 
to offer qualities which very nearly approach those of Kriging (in terms of modeling ability, flexibility, 
and generalization properties) but with significant advantages in terms of performance.  The RBF class of 
surrogates covers a wide range of methods, from simple fixed basis RBF to fully parametric RBF 
approaching the complexity of Kriging.  Within this class, we have the freedom to trade generality for 
performance, depending on which parameters are solved by optimization (parametric RBF) versus which 
parameters are fixed (RBF).  It is argued that a particularly efficient middle ground is the quasi-
parametric RBF framework, where metaparameters evolve according to a prescribed algorithm.  Such 
algorithms may be rooted in heuristics and are designed to ensure adaptivity while maintaining high 
performance.

4.2.2  MULTIFIDELITY RADIAL BASIS FUNCTION SURROGATE MODELS

In this section, multifidelity modeling issues are described for models involving radial basis functions. 
We describe two modeling formulations and variance and bias errors.  The first derives from previous 
research in which radial basis functions model the systematic errors of each surrogate system in relation 
to higher fidelity systems.  The second formulation treats fidelity as a design dimension and adjusts the 
specific scaling in the radial function.

4.2.2.1  Modified Kennedy and O’Hagan Scheme

The first and primary modeling formulation is adapted from Kennedy and O’Hagan (2000) involving both 
linear and Kriging models. This was the approach used in Huang, Allen, Notz, and Miller (2006).  The 
“cascading” formulation is:

fl(x) = fl-1(x) + δl(x) (l = 2, 3, …, m) (1)
where fl is the function evaluated at fidelity level l and δl(x) is independent of f1(x), f2(x), …, fl-1(x) and x 
is a d dimensional decision vector.  Hypothetically, different levels of l also could be different levels of a 
discrete factor for the same fidelity level.  For convenience in the notations below, we also let: 

f1(x) = δ1(x). (2)
Note that for l = 2, 3, …, m, δl(x) can be understood as the “systematic error” of a lower-fidelity system, 
(l–1), as compared to the next higher-fidelity system, l.  In these cases, δl(x) is usually small in scale as 
compared to fl(x), otherwise there will be no reason for the lower-fidelity system to exist.  Of course, in 
some cases, physics may be missed in low-fidelity model(s) and δl(x) will be large. 

In radial basis metamodeling, the response is assumed to be a linear model.  We use another radial basis 
function to model the departure of the lowest-fidelity system, δ1(x), as well as the difference between 
systems, δl(x) (l = 2, 3, …, m).  Therefore, we have

δl(x,S1,…,Sm) = b(x,S1,…,Sl)Tβl + εl (l = 1, 2, …, m) (3)
where bl and βl are the basis functions and coefficients, respectively, of a linear model.  Also, the sets 
S1,…,Sm contain the input points for selected past runs at the m levels of fidelity.  In general, not all 
previous runs are included in the model so that there can be lack of fit estimation.
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The linear model portion is richer in Eq. (3) than in Huang, Allen, Notz, and Miller (2006) because it 
contains dependence on design points.  The basis functions of the linear model here are radial centered on 
the design points.  By basing the model centering on design points there is no nonlinearity associated with 
picking runs.

In our implementations, we use Gaussian basis functions or, alternatively, reciprocal multiquadrics 
centering in both cases on k selected runs.  In this report, we focus somewhat arbitrarily on Gaussian basis 
functions but our experiences with the use of multiquadrics were similar.  For a single fidelity level the 
Gaussian basis function is:

 = exp[–γ (x – xj)′(x – xj)] (j = 1, 2, …, k). (4)

where γ  is an adjustable scale parameter.  In this report, we focus on γ  as a fixed parameter. Yet, the 
adjustment of γ  as the algorithm evolves is considered promising for further improvements to numerical 
results on test problems.  In general, our Team feels that desirable algorithms that increase γ  as the 
algorithm are most likely to foster improved results.

Therefore, the general form of the prediction model at the point x at fidelity level l is:

fl(x) = . (5)  

With these assumptions, the linear model design matrix, X, is somewhat sparse.  For example, with three 
fidelity levels and k1, k2, and k3 runs included in the model and n1, n2, and n3 total runs at each of three 
fidelity levels, the X matrix is:

In our numerical results, we fitted Eq. (5) by solving the normal equations using singular value 
decomposition (SVD) and ANSI C code.  This code was significantly modified from code in Press, 
Teukolsky, Vetterling, and Flannery (2007).  The modifications include facilitating multivariate 
modeling, covariance estimation, and error prediction. 

The modified version is order (n1 +…+ nm)3 but it requires generally negligible computing time compared 
with likelihood optimization in sequential Kriging optimization (Huang, Allen, Notz, and Miller 2006). 
Also, linear model estimation using SVD is generally more reliable and reproducible in part because of 
limited sensitivity to numerical issues.

4.2.2.2  An Alternative Augmented Dimensionality Formulation

Our team also considered alternative modeling formulations for addressing fidelity based on scaling 
inputs (Reisenthel et al., 2006).  In some of these formulations, global adjustments to distances are made 
based on the differences between fidelity levels of the runs.  Assume that f(i) is a 1 × m vector with a 1 
when i is the fidelity level of run i or 0 otherwise.  In this approach, we consider adjustable parameters, 
i ≥ 0 , for each of the design dimensions i = 1,…,d and Gij ≥ 0 for all fidelity levels j = 1,…m and 

i = 1,…m.  The revised density is:

φ(xi,f(i),xj,f(j)) = exp{– - Gij||f(i) – f(j) ||2} (6)
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where xk,i is the kth element of the vector xi. The model is simply:

f(x,q) = (7)

And the design matrix is:

where we have assumed that all runs have been included in the model as an example.  Therefore, Eq. (6) 
would represent a saturated model that generally passes through all of the design points. 

This alternative, more concise formulation has the disadvantage that the Gij weight parameters must be 
adjusted heuristically.  Also, there is no guarantee that the process will converge to accurate models of the 
bias or systematic errors or the predictions of the highest fidelity model will converge.  Yet, the 
augmented dimensionality approach includes far fewer parameters to be estimated and can be expected to 
offer efficiency advantages for cases in which assumption parameters match problem properties closely.

4.2.2.3  Modeling Prediction Variance

A possible advantage of Kriging models over radial basis functions is that they provide a model of mean 
and uncertainty even if the model passes through all the design points.  Kennedy and O’Hagan (2000) and 
others have clarified the Bayesian nature of the intervals.  Yet, the interpretation and validity of the 
derived intervals in realistic cases is not fully understood.  At the same time, the computational 
performance in test problems of methods based on these Kriging error estimates appears to be good.

By contrast, the radial basis functions considered in previous sections are associated with regression type 
intervals.  If the prediction model passes through all the design points, the standard regression intervals 
indicate zero prediction errors at all points.  This follows because the standard intervals are based on so-
called variance errors and therefore derive entirely from the assumed repeatability or random errors.  We 
consider four possible approaches to address predictions of prediction uncertainty:

1. Assumed random errors – Some of the computational results from the team derived from ad hoc 
assumptions of random error standard deviation, σ, inserted into the prediction variance formula:

σ l
2  x  = Var[yprediction(x,l)] = σ0

2b(x,S1,…,Sl)T(X′X)–1b(x,S1,…,Sl). (8)

This approach has some intellectual coherence in the context of FEM.  This follows because there 
is often a known or typical uncertainty associated with computer code, e.g., related to the mesh 
size.  Yet, the errors are not like typical repeatability errors.

2. Simply estimated random errors – A selected set of runs can be dropped from the model and used 
for estimating σ as is common in regression.  In our computational results, we simply drop the 
most recently collected r runs from fitting.  The standard Analysis of Variance estimate of the 
random error is then:

 0 =  [Y − X 
T
][Y − X ] / n−r (9)

which is based on an equal variance assumption as is standard in regression.

3. PRESS estimated random errors – The standard regression cross validation method of leaving out 
each observation, fitting with the others, and then rotating can be applied to estimate σ.  This 
estimate is based on an average of calculations from Eq. (9). 

4. Bias plus variance – Research by the OSU members of our Team has recently invented formulas 
for the variance and the bias.  Such approaches are well-founded and make reference to high-
order polynomial true models.  They offer an intellectually coherent way to assign uncertainty 
even for cases like FEM with known perfect repeatability.  Tseng (2007) provides several useful 
formulas. 
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Option 4 is the most attractive.  However, in practice estimating bias errors requires the assumption of the 
model form of the true model, e.g., a fourth-order polynomial, and a distribution of the unknown 
coefficients.  The associated arbitrariness of related assumptions makes these methods seem less 
attractive.  Yet, Kriging models have associated ambiguities also relating to the validity and convergence 
of the assumed correlation parameters.  At present, we focus on options (1) and (2) from the above list 
and leave options (3) and (4) for future research.

4.3  OPTIMIZATION METHODS
This section describes the central optimization problem and solution method framework.  The 
framework is based on sequential optimization using radial basis function metamodels.  It is based on 
a search after every computational analysis4 for the location of the next run in the parameter and 
fidelity space that maximizes the expected improvement in a manner similar to Huang, Allen, Notz, 
and Miller (2006).  Next, the expected improvement function is described and method variations based 
on it are defined.  Finally, the developed Visual Basic, ANSI C, and Octave codes developed in this 
work are briefly characterized.  

4.3.1  THE OPTIMIZATION PROBLEM

Suppose there are a total of m systems to draw evaluations from, including the real and the surrogates. 
Denote the output functions of these systems in increasing order of fidelity by f1(x), f2(x), …, fm(x), 
where x is the input vector.  Therefore, f1(x) has the lowest fidelity, and fm(x) has the highest fidelity. 
As mentioned previously, the highest-fidelity system is the system of interest, therefore the goal is to 
minimize fm(x) within the feasible region, χ, i.e.

min
x∈χ

f m x  . (10)

We consider the systems as black boxes that provide no information other than measurements of the 
outputs.  Denoting by d the dimension of the input space, we assume that the feasible region ⊂Rd  is 
connected and compact.

Each system is associated with a cost-per-evaluation, which is denoted by C1, C2, …, Cm, respectively.  In 
this research, the total cost of all evaluations measures the efficiency of the optimization scheme. 
Usually, a lower-fidelity evaluation is cheaper than a higher-fidelity evaluation, i.e., C1 < C2 < … < Cm. 
Also, for now we assume that the cost of even the cheapest system is somewhat expensive, such that it is 
“worthwhile” to regenerate a radial basis function metamodel in order to determine the next search 
location.  

In addition, the measurements of a system output may contain random error or noise.  For each system, 
we assume that random errors from successive measurements are independent identically distributed 
(IID) normal deviates.

4.3.2  GENERAL OPTIMIZATION FRAMEWORK

The outline for the proposed Multiple Fidelity Sequential Radial Basis Optimization (MFSRBO) is as 
follows:

Step 1: Initialize radial basis function parameter(s), e.g., γ  and the residual parameters, e.g., r, the 
number of computational analyses for residual or error estimation.

Step 2: Perform an initial experimental design involving all fidelity levels.  Section 4.3.3 describes the 
options and focuses on n run Latin hypercube initial experiments following Huang, Allen, Notz, 
and Miller (2006).

4  also referred herein as “experimental run”
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Step 3: Fit the radial basis function of the selected type (see Section 4.2.2) to all available data using 
singular value decomposition (SVD)-based least squares estimation.  

Step 4: Find the location and fidelity level of the new evaluation that maximize the augmented expected 
improvement (EI) function.  If the EI function is sufficiently small, go to Step 6.

Step 5: Conduct an evaluation at the selected point from Step 4.  Go to Step 3.

Step 6: Perform an additional search and/or evaluation to evaluate solution quality.  For example, apply 
trust region evaluation which includes a check for Karush-Kuhn-Tucker point convergence.

Note the removal of a diagnostic step from the Huang, Allen, Notz, and Miller (2006) because there is no 
need to assume zero expected mean for the biasing functions, δl.  This constitutes one advantage of 
sequential radial basis optimization (MFSRBO) methods proposed here and may be expected to lead to 
relatively robust performance, particularly in cases involving large systematic errors. 

By convention, Step 1 is also referred to as the “initial fit” stage, while Steps 4 and 5 are called the 
“infill” or “update” stage.  The sequentially added evaluations are also called the “infill” or “update” 
points.  Note that the proposed method differs from its predecessors mainly in the following two aspects: 
1) the radial basis function metamodel is generated using multiple fidelity data, and 2) the EI formulation 
takes into account not only the location but also the fidelity level of an infill point.

4.3.3  DESIGN FOR INITIAL FIT

Step 2 in the previous section involves an experimental design for an initial fit.  This is essentially the 
same as the initial step in methods based on Kriging models (e.g., Huang, Allen, Notz, and Miller 
2006).  Again, assume the number of factors is d.  The methods in Huang, Allen, Notz, and Miller 
used an n = 10 × d run maximum minimum distance Latin hypercube (from the lhsdesign function in 
MATLAB®) for the lowest fidelity system and then selected a subset for higher fidelity systems.  If 
the system includes random errors, d replicates are added to all levels at locations where the best 
responses are found.

As another alternative for future exploration, we suggest an initial design that includes all points on a 
grid for the lowest fidelity level.  For each higher fidelity system, a subset of the previous points is 
selected including the q% of the best results from lower fidelity levels.  In most of the numerical 
examples shown in this report, q = 25%.  The rational for using a grid instead of a Latin hypercube is 
that the projection properties of Latin hypercubes are likely not relevant since all systems are 
generally important.  Also, radial basis functions are not affected by the numerical errors for Kriging 
models associated with equally spaced inputs.

4.3.4  EXPECTED IMPROVEMENT FUNCTIONS

The expected improvement function fits into the search framework in Section 4.3.2 and is used to 
select the next “infill” point.  The function balances the desire to improve the search criterion with the 
desire to reduce uncertainty in a manner reminiscent of trust region point selection.  The methods 
explored here are a straightforward application of the formulation in Huang, Allen, Notz, and Miller 
(2006) except that they are based on radial basis functions instead of Kriging models.

Therefore, for Multiple Fidelity Sequential Radial Basis Optimization (MFSRBO), we propose the 
following augmented Expected Improvement function:

EI  x , l ≡E
ε
[ max  f m x* − f m x −σm x  ε , 0 ] α1  x ,l ⋅α2  x , l ⋅α3 l  (11)

where ε is normally distributed N[0,1] and

α1  x , l  = function that discounts systems relating to their predicted accuracy, (12)
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α2 x ,l  = 1 − σ0 /  σ l
2 x  σ0

2  , (13)

and α3  l =
Cost m
Cost l

.

If the problem is deterministic, i.e., with zero repeatability error, then we (generally) use α2(x,l) = 1 and 
f m x

*  is the minimum of the already sampled points.  More generally, if at least a single system has 
noise, in Eq. (11), x* stands for the current “effective best solution” defined by

x* = argmax
x∈{ x1 , x2 ,. . .x n }

[ u x  ] (14)

where u  x  =− f m x − σm x  .  The formula from Jones, Schonlau, and Welch (1998) is: 

E
ε
[max  f m x* − f m x −σ  x ε ,0 ]=

 f m x* − f m  x   f m x
*
− f m x 

σm  x   σm x   f m x
*
− f m x 

σm x  
(15)

where   is the cumulative normal and   is the normal density.  We need the two formulas for the 
variance, i.e., with and without bias.  In Huang, Allen, Notz, and Miller (2006), 1  was chosen as 

α1  x , l =corr [ f m x 1 m x  ,
f l  x 2 l  x ] (16)

where “corr“ is the correlation function and 1  and 2  are independent normally distributed deviates. 

This choice had the following desirable properties:
1. It is easy to compute in the context of Kriging models,
2. When l = m, it equals 1.
3. For deterministic systems, it equals zero at past design points since σl(x) is zero.

Unfortunately, for radial basis function systems, Eq. (16) is not easy to compute.  In the “augmented 
dimensionality” version of our method, we inserted an estimate of Eq. (16) based on numerical 
integration (see Appendix A).  For other methods, we used the following formulation which is relatively 
easy to compute:

α1  x , l  =
σl  x 

∣ f m x −
f l  x ∣ σm x  (17)

where || is the absolute value.  This approach has the above-mentioned desirable properties in the 
context of radial basis functions.

4.3.5  METHODS VARIATIONS

Every combination of modeling method, expected improvement function (assumed random error, 
simply estimated random errors, PRESS, and bias plus variance), expected improvement function 
(deterministic or stochastic), and termination sequence (simple or trust region) hypothetically 
corresponds to a method variation.  Here, we consider only a select few combinations, characteristics 
of which are summarized in Table 2.  

If the method has simple termination then it is called multifidelity sequential radial basis optimization 
(MFSRBO) or, for cases involving only a single level of fidelity, sequential radial basis optimization 
(SRBO).  If the method terminates by applying a downhill search such as trust region augmented 
Lagrangian methods, then we refer to the method as a “hybrid”. 
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Table 2.   Variants considered in the computational and theoretical approach.
Method Variant Prediction Uncertainty EI Function Termination

 1. MFSRBO: augmented 
dimensionality

Variance Intervals based on 
assumed prediction errors

Deterministic Simple

 2. MFSRBO: cascading 
model

Variance intervals from estimated 
random errors

Deterministic Simple

 3. SRBO: cascading model Variance intervals from estimated 
random errors

Stochastic Simple

 4. Hybrid Variance intervals from estimated 
random errors

Both Trust Region Augmented 
Lagrangian

4.3.6  COMPUTER CODES

The method “MFSRBO: augmented dimensionality” was used to demonstrate multifidelity radial 
basis function optimization on a real-world aerospace example (Section 5.2.3).  This method was 
implemented using NEAR RS, a radial basis function-based regression tool whose response surface 
search module was modified to accommodate the computation of the multifidelity expected 
improvement function as the optimization driver.  In NEAR RS the multifidelity cumulative metamodel 
concept relies formally on a dimensionality augmentation of the input data (control variables) space by 
including the fidelity level as an additional variable, Eq. (6).  Search projections are required to counter 
this dimensionality augmentation and confine the optimization to the subspace corresponding to the 
desired level of fidelity.  In other words, we seek to optimize a function (or its metamodel 
representation) on the high-fidelity manifold, regardless of where low-fidelity optima may be.  The 
point of view adopted here is that the lower fidelity data act as “support” vectors aiding the 
characterization of the high-fidelity space.  

NEAR RS's response surface search module is written in GNU Octave, an interpreter-based, Matlab®-
like program for high level computation that is freely available under GNU General Public License. 
While very versatile, the associated code was not judged to be computationally efficient enough for 
widespread use.  This is due in part to the nature of Octave, as opposed to the execution speed of a 
compiled language, such as ANSI C, and in part to the cost of computing numerically the correlation 
term (Appendix A) at each evaluation of the surrogate.  Additional complications include the use of 
Options 1 and/or 2 (Section 4.2.2.3) for the modeling prediction variance, ascribing an inputed 
variance at each data point (“support” vector) according to what is believed to be a known or typical 
uncertainty associated with a particular code for a particular problem.  This approach lacks rigor, 
because it ascribes an essentially epistemic type of uncertainty (i.e., no assumptions in regard to the 
distribution of the error within the interval), and subsequently treats this uncertainty as if it were 
aleatory uncertainty5.  Furthermore, what could be principally bias error is treated as variance.  

Thus, while the above methods have enjoyed empirical success, the assumption of the variance 
complicates comparison with methods that are not based on assumed random errors in Huang, Allen, 
Notz, and Zheng (2005) and Huang, Allen, Notz, and Miller (2006).  Also, these alternative methods 
have explicit models for the systematic errors through their “cascading” model formulation and thus 
likely converge to a true picture of the fidelity hierarchy.  For this reason, the comparison results 
presented in Section 5.2.2 are based on method variants 2-3 (SRBO: cascading models and MFSRBO: 
cascading models) and were implemented in a new code, the features of which include:

[1] The ability to call Windows simulation and read results using shell and wait,
[2] Enumeration-based (inefficient but repeatable) expected improvement function optimization 

(every iteration, the code evaluates all alternatives on a grid to select the point that maximizes 
the expected improvement), and

[3] Microsoft excel interface. 

5  In other words, the input uncertainty internal is treated as the standard error of a stochastic process.
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The code developed for these purposes is a combination of ANSI C++ and Visual Basic (VB).  The 
developed code is not owned or copyrighted by any participants not on the Team.  The singular value 
decomposition (SVD) estimation code was based on numerical recipes code which was significantly 
altered.  The hybrid designs considered here are only for the convergence results established in the next 
section.  Additional hybrid designs are proposed for future research to offer improved computational 
results while achieving rigorous convergence.

4.4  COMPUTATIONAL ANALYSIS METHODS
The computational results presented in this report (Section 5.2) consist of several test problems (e.g., 
Branin function, multifidelity Rosenbrock function) and two applications involving computational 
structural and computational fluid modeling.  

For the structural analysis tool we used McIntosh Structural Dynamics' finite element code CNEVAL 
(Lesieutre et al., 1997).  The wing structure was modeled using conformal quadrilateral plate elements 
cantilevered at the root chord.  Given the normal aerodynamic forces, CNEVAL provides the structural 
displacements, stresses, frequencies, and overall structural weight.  CNEVAL was used to predict the 
static aeroelastic deformations and to verify that structural limits were not exceeded.  CNEVAL uses the 
current wing planform information,6 along with the planform thickness information and material 
properties, and updates the finite-element model of the wing which is subdivided into quadrilateral panels 
used to distribute the aerodynamic loads for the wing displacement calculations.  Each panel is divided 
into 2 triangles.  An option also exists to further subdivide a quad element into 4 triangles for greater 
accuracy.  Both high- and low-fidelity structural modeling were carried out using CNEVAL by changing 
the finite element discretization, as described in Table 3. 

Table 3.   Finite element discretization.
Wing Design 

Problem
Fidelity

Level
 Number of Structural Elements
Chordwise Spanwise

Element Type

Unswept tapered
High 10 15 4 triangle elements per structural quad
Low 2 2 2 triangle elements per structural quad

UAV, swept
High 10 15 2 triangle elements per structural quad
Low 4 7 2 triangle elements per structural quad

A version of NEAR's intermediate-level aerodynamic prediction code MISDL (Lesieutre et al., 1998, 
Dillenius et al., 1999) was used as the high-fidelity fluid model.  MISDL is based on panel methods, 
vortex lattice with compressibility correction for subsonic flow, and other classical singularity methods 
enhanced with models for nonlinear vortical effects.  The method is applicable to subsonic and supersonic 
flight vehicles including aircraft, UAVs, missiles, and rockets.  Circular and noncircular cross section 
bodies are modeled by either subsonic or supersonic sources/sinks and doublets for volume and angle of 
attack effects, respectively.  Conformal mapping techniques are used for noncircular bodies.  The fin/wing 
sections are modeled by a horseshoe-vortex panel method for subsonic flow and by first-order constant 
pressure panels for supersonic flow.  Up to three lifting surface sections can be modeled and nonlinear fin 
and body vortices are modeled.  MISDL predicts overall aerodynamic performance coefficients and 
detailed aerodynamic loading distributions.  The code has seen extensive use in missile aerodynamic 
analysis and design, including aerodynamic shape optimization and multidisciplinary design optimization 
when coupled to a structural finite element model.  In recent years, MISDL has seen use in the analysis of 
manned and unmanned (UAV) aircraft.   

OPTMIS is the name used to designate the version of MISDL that is coupled with CNEVAL.7  The cross-
disciplinary coupling is handled by the OPTMIS logic through successive iteration between codes. 
OPTMIS handles interpolation, displacement and load transfer operations and iterates between 

6  i.e., the (x,y)-projected shape of the wing
7  OPTMIS also contains an optimization module of its own, based on Powell's conjugate gradient method, but the 

optimization component was not used in this study.
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aerodynamic and structural predictions until a prescribed convergence level is reached.  Convergence is 
obtained when the change in the displacements between successive iterations is less than a user-prescribed 
threshold at all structural node points.  For the purposes of this study, OPTMIS was enhanced with the 
computation of the induced drag.  Rather than incorporating a Trefftz plane analysis, such as might be 
done in an Euler code, the induced drag was computed using a direct method, as follows.  

To compute the induced forces on the wing, the Kutta-Joukowski theorem is used:  F i= ρui×Γ i .  This 
induced force vector is computed on each panel as the cross product of the total induced velocity on the 
panel (sum of all vortex lattice induced velocities; the freestream velocity being omitted) and the panel 
bound vortex vector.  The drag component of F i from each panel is computed and summed to obtain the 
total induced drag.  Several test cases were used to verify the calculation, and the theoretical limit of 
CDi = CL

2/(πAR) was obtained for elliptically loaded wings.  An option also exists to prescribe a cosine-
shaped spanwise layout of the panels8 to increase computational accuracy.  The low-fidelity fluid 
modeling amounted to simple lifting line theory, conveniently implemented within OPTMIS using a 
degenerate panel layout, as shown in Table 4.  Code robustness issues precluded the use of this 
implementation for the case of the UAV wing planform and, so, for this case, the low-fidelity model 
consisted of a coarse panel discretization aerodynamic model, the details of which are also furnished in 
Table 4.  

Table 4.   Aerodynamic Panel Layout.
Wing Design 

Problem
Fidelity

Level
 Number ofAerodynamic Panels
Chordwise Spanwise

Spanwise Panel Layout

Unswept tapered
High 10 15 Cosine distribution
Low 1 2 Uniform

UAV, swept
High 10 15 Uniform
Low 4 7 Uniform

The isotropic material used for the structure was aluminum.  We used the following material constants: 

Table 5.   Material Properties.
Material Property Value

Young's modulus

Poisson's ratio

10.5 × 106 lbf/in 2

0.3

Density

Maximum allowed Von Mises stress

0.1 lb/in3

22.5 × 103 lbf/in2

The structural cross section geometry was self-similar as a function of span, and idealized as shown in 
Figure 2.  All parameters in Figure 2 were modeled as being linearly varying from root to tip, with 
maximum and minimum values indicated in Table 6.

Figure 2.   Structural cross-section.

 

Table 6.   Geometric Parameters (in ft.).

Geometric Parameters Tapered wing UAV wing

X1_root 0.2 0.348

X2_root 0.3 0

TH_root variable 0.025

X1_tip 0.2 0.103

X2_tip 0.3 0

TH_tip 0.028 0.025

LER 0 0

8  exhibiting maximum refinement at the wing tip
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5.  RESULTS
The results of this STTR Phase I are organized as follows.  Convergence results are first presented, 
followed by computational results.  The computational results include comparisons between methods 
based on single fidelity level results (Section 5.2.1), application of multifidelity optimization to model 
problems (Section 5.2.2), and multifidelity multidisciplinary design problems involving aeroelastic wings.

5.1  RIGOROUS CONVERGENCE RESULTS
This section describes rigorous convergence of the methods that we call “hybrid” methods (see 
Section 4.3.5).  The convergence proof is obvious and builds on the multifidelity convergence results 
from Rodriguez, Renaud, and Watson (1998).  Those authors described rigorous results and showed 
that their trust region method converged under the assumptions they defined.  Their results hold for 
deterministic optimization only and are typical perhaps of nonlinear programming convergence to 
local minima results.  In general, with only a few conditions any downhill search converges.  The 
contribution here relates to the multifidelity aspect of the modeling.

After clarifying their conditions and the trivial convergence of hybrid methods we discuss how some of 
the Rodriguez, Renaud, and Watson (1998) conditions might be relaxed and computationally efficient 
methods might be developed with rigorous guarantees.  The hybrid methods are assumed to be likely to 
offer global results similar to other methods based on global methods and convergence similar to trust 
region methods.  Yet, it is believed further method development will be needed to achieve both global and 
rigorous convergence results and the computational efficiency of nonhybrid methods.

5.1.1  CONVERGENCE CONDITIONS

Trust region augmented Lagrangian multifidelity methods have been proven to converge to local 
optima of the highest fidelity system (Rodriguez, Renaud, and Watson, 1998).  Yet, their assumptions 
include that the systems are deterministic and that the fidelity level, ψ, can be continuously adjusted. 
In the context of multiple local minima they can be considered inferior since sequential optimization 
methods using global metamodels have been demonstrated on test problems to converge efficiently to 
the global optimum. 

The purpose of this section is to clarify the conditions used to prove the trust region convergence.  As a 
result, reviewing the assumptions from Rodriguez, Renaud, and Watson (1998) clarifies the convergence 
criteria for hybrid methods.  It also illuminates the conditions and issues for future, more efficient hybrid 
optimization method convergence.  Because the notation used is somewhat different than in preceding 
sections and because of the length of the material, the list of underlying assumptions is relegated to 
Appendix B.

5.1.2  CONVERGENCE RESULTS

Clearly, if a method can be applied starting at any point and converge, convergence is guaranteed starting 
from the output of a SRBO or MFSRBO method.  Therefore, simple hybrid methods converge if the 
method used in the last phase converges. 

Nontrivial combinations of sequential radial basis optimization (SRBO) and trust region components can 
certainly be developed that offer computational efficiency advantages and proven convergence benefits. 
The key issues are the issues for virtually all nonlinear programming methods: (1) maintaining of positive 
probability of improvement and (2) converging only when the conditions for a local minimum (KKT) are 
met.  Also, the proofs in Rodriguez, Renaud, and Watson (1998) are presented in terms of a series of 
paired levels of fidelity. It seems likely that the key steps can be revised so that the fidelity levels can be 
discrete and the proof still applies.
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5.2  COMPUTATIONAL RESULTS
The MFSRBO algorithm outlined above was developed, tested, and refined based on a numerical test bed 
consisting of eight different optimization problems.  The main characteristics of these eight problems are 
outlined in Table 7.    

Table 7.   Overview of numerical test cases.

Multi- Design Number of Constraints

Test Problem Name Goal / Comment Disciplinary Fidelity Variables Aero. Structural

Six hump Branin function

Unconstrainted 
minimization, 

exhaustive grid-
based search, 

comparison to other 
methods

no no x1, x2 n/a

Rosenbrock function & 
approximation

Unconstrainted 
multifidelity 

minimization
no ✓ x1, x2 n/a

Symmetrized Rosenbrock 
function & approximation

Multifidelity 
optimization with two 

distinct optima
no ✓ x1, x2 n/a

Aeroelastic Wing Design 1

          “ 2

          “ 3

          “ 4

Minimize induced 
drag, subject to lift 

and stress 
constraints

✓ ✓

α0 1 1

α0, dα/ds 1 1

α0, dα/ds, 
θ0

1 1

α0, dα/ds, 
θ0, Λ

1 1

UAV Aeroelastic Wing Design Optimize stability, 
subject to trim, 

payload, and stress 
constraints

✓ ✓ α0, dα/ds 2 1

With the exception of the first test problem (Section 5.2.1), the surrogate search used in each of the 
optimizations amounts to a multistart steepest ascent9 scatter-and-poll strategy (Queipo et al., 2005) for 
calculating arg max  EI x , l   .  

5.2.1  SINGLE FIDELITY LEVEL RESULTS

The single fidelity results presented in this section are almost the same for the test functions the OSU 
members of our Team considered as the results in Huang, Allen, Notz, and Miller (2006) and Huang, 
Allen, Notz, and Zheng (2006).  This follows because in virtually all of the test problems good 
solutions were obtained from the initial design portions which were identical between the Kriging 
model and radial basis function-based approaches.  In all of the problems in Huang, Allen, Notz, and 
Miller (2006), for example, fewer than 25% of the evaluations were after the initial design evaluations. 
First, we consider the single fidelity noisy case for simplicity.

In the results shown below the Sequential Radial Basis Optimization (SRBO) method is empirically 
compared with three alternative approaches from the literature.  The first alternative considered is the 
Simultaneous Perturbation Stochastic Approximation (SPSA) from Spall (1998).  The second 
approach is the Revised Simplex Search (RSS) procedure, a variant of the Nelder-Mead method, 
proposed by Humphrey and Wilson (2000).  As the original RSS procedure was not designed to 
handle constraints, we modify it so that whenever a point is infeasible, the algorithm selects the 

9  see Appendix A for further detail
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nearest feasible point instead.  The third approach is the DIRECT method developed by Gablonsky 
(2001) et al.

Here, we focus on a single fidelity system with noise. In this case, the test function is the six hump 
camelback function from Branin (1972) with ~ N(0, 0.122) noise added.  The function is:

f (x) = 4 x1
2 – 2.1 x1

4 + 1/3 x1
6 + x1 x2 – 4 x2

2 + 4 x2
4 (18)

-1.6 ≤ x1 ≤ 2.4, -0.8 ≤ x2 ≤ 1.2

x* =(0.089, –0.713) and (–0.089, 0.713), f* = –1.03

In this problem, there are six local and two global optima. For the single fidelity, noisy case, the expected 
improvement function (Eq. (11)) simplifies with α1 = α3 = 1.

Figure 3 plots two randomly selected sequential radial basis optimization (SRBO) runs overlaid on the 
results of four alternative methods.  The SRBO method was applied using γ  = 0.5 and r = 3, i.e., the last 
three runs are used for the residual.  The results indicate that SRBO methods converge quickly like 
sequential Kriging optimization (SKO) methods.  There might be an issue with convergence although that 
might relate to the 100×100 grid used for expected improvement optimization.  It is also possible that the 
convergence is limited by the constant γ, which explains why our Team varied γ  in our aerospace wing 
case study (Section 5.2.3).

-1.5

-1.0

-0.5
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SRBO (1)

SRBO (2)

SPSA (1)

SPSA (2)

RSS  (1)

RSS (2)

DIRECT (1)

DIRECT (2)

SKO (1)

SKO (2)

Figure 3. Results from two randomly selected runs of each method on the six hump camel back function. 
(Vertical axis corresponds to the function value.  Horizontal axis corresponds to the number of 
function calls).

- 21 -



Nielsen Engineering & Research, Inc. – DoD STTR Topic AF08-BT03 – Contract FA9550-09-C-0135 Final Report
“Development of Multidisciplinary, Multifidelity Analysis, Integration and Optimization of Aerospace Vehicles”

5.2.2  MULTIFIDELITY TEST PROBLEM

The application of the augmented dimensionality multifidelity sequential radial basis optimization 
(MFSRBO) to Rosenbrock's function is considered next.  Similarly to Eldred et al. (2004), we 
consider the minimization of Rosenbrock's function (Figure 4):

 f HF= 100x2 − x1
2 2 1− x1 

2  (19)

f HF is the true (high-fidelity) function to be minimized.  It's low-fidelity surrogate f LF is defined as

f LF = 100 x 2 − x 1
2  0.22 0.8 − x 1

2 (20)

Figure 4. Isocontours of the high-fidelity 
Rosenbrock function. 

Figure 5. Comparison between the Rosenbrock 
function and its low-fidelity counterpart in 
the vicinity of their optima. 

While the two functions have similar structure, the high-fidelity function has its minimum at ( x1 = 1 ,
x 2 = 1 ), the low-fidelity one at ( x 1 = 0.8 , x2 = 0.44 ).  The two functions are not, in the strictest 

sense, weakly consistent, but the problem has favorable structure.  In the immediate vicinity of the 
high-fidelity optimum f HF = 0  but f LF ≈ 4  and the difference between the two models exhibits 
strong gradients, as illustrated in Figure 5.  

Because the methods described in Section 4.2.2  integrate data at all levels of fidelity to build a global radial 
basis function metamodel, it is possible to use the associated Multifidelity Expected Improvement function 
(Eq. (11)) as the criterion determining the location and fidelity level of subsequent evaluations:

EI x ,k  ≝ E [max  f m  x
*
− f m x  − m x  ,0  ] .corr [ f k x  , f m x ] .1−  0 ,k

  k
2  x   0 ,k

2 .Cost mCost k
 

where f m x  is the high-fidelity prediction at point x , and x*  is the current “effective best solution” 

defined in Eq. (14).     0 , k
2  is the unexplained variance of the radial basis function model at level k , and 

 k
2 x   is the variance of f k x .  The correlation term corr [ f k  x  , f m  x ]  is used to discount the 

expected improvement when an evaluation from a lower fidelity surrogate is used.  The term involving  0 ,k
2  

accounts for diminishing returns of additional replicates as the prediction becomes more accurate, and the 
cost ratio adjusts the sampling strategy according to the evaluation costs (Huang et al., 2006).  The location 
and fidelity of the next evaluation, x n1  and kn1  are given by maximizing EI x ,k  , i.e.:
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  xn1 , k n1 = arg max  EI x , l   (21)

The effective best solution x*  is defined by x* = arg max u x    where u x  = − f m x −  sm x   
expresses the willingness to trade one unit of the predicted objective for   units of the standard deviation of 
the prediction uncertainty (Schenk et al., 2005).  Also, the expectation in EI x ,k   is conditional given the 
past data and given estimates of the correlation parameters.  Thus, the expectation is computed by integrating 
over the distribution of f m x  , with f m x

* fixed.  Specifically, assuming a normally distributed error, the 

probability of improvement P [ f m x   f m x
*]  is defined as

P [ f m x   f m x
*] =

1
sm x 

∫
−∞

f mx
*

 y− f m x  ; sm xdy   (22)

where   is the probability density function:

 y ; =
1

2
exp− y 2

2 2    (23)

As pointed out in Forrester et al. (2009), the expected improvement is the first moment of Eq. (22), i.e.,

EI | f mx  f m x
*
=

1
sm x 

∫
−∞

f mx
*

 f m x − y  .  y− f m x  ; sm x dy   (24)

After integration by parts, the expectation can be calculated analytically as follows:

E [max  f m  x
* − f

m
 x  ,0 ] =  f m x

* − f
m
 x  .  f m x

*− f
m
 x ; s

m
 x 

                    sm x  .  f m x
*− f m x ; sm x 

  (25)

where   is the normal probability density function defined above, and   is the normal cumulative 
distribution function: 

 y ; =
1
2 [ 1 erf  y

 2  ]   (26)

For the multifidelity Rosenbrock function, the initial design consisted of four points (the four corners in 
Figure 4), three of which were low-fidelity.  The high-fidelity corner was chosen randomly.  An assumed 
data point uncertainty ( 0  in Eq. (8)) of 0.01 was used.10  A typical optimization result is shown in 
Figure 6 which depicts the search path history.  In Figure 6 the low-fidelity function evaluations are 
identified by the small symbols and the high-fidelity ones with the larger symbols.  

The optimization correctly identifies the high-fidelity optimum in a relatively small number of high-
fidelity function evaluations.  For reference, Figure 7 shows the low-fidelity subset of Figure 6, super-
imposed on isocontours of the low-fidelity function.  This picture helps understand the role of the low-
fidelity evaluation as an aid to sample the design landscape.  Note in particular the accumulation of points 
near the high-fidelity optimum ( x1 = 1 , x 2 = 1 ), not the low-fidelity one ( x 1 = 0.8 , x 2 = 0.44 ).  

In the results depicted in Figures 6 and 7 the assumed cost ratio between the two fidelity levels was 3/2. 
As expected, the multifidelity expected improvement function effectively drives the objective towards the 
high-fidelity optimum and takes advantage of the presumed-low-cost, low-fidelity evaluations to find a 
positive direction of improvement.  The approach is successful because the cumulative radial basis 
function metamodel is able to “learn” the relationship between the low- and high-fidelity projections.  In 
an ideal sense, this nonlinear relationship must be accurately defined using as few (expensive) high-

10  for purposes of comparison with the Branin function example considered in the previous section, this data point 
uncertainty can be thought of as ~ N(0, 0.01) “virtual” noise
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fidelity observations as possible.  Our empirical observations suggest that, because the uncertainty on this 
relationship remains large if the number of high-fidelity observations is too few, there is a practical 
tradeoff which must be considered in the initial design.  For the majority of our experiments, the ratio of 
high-fidelity to low-fidelity initial count was around 25%.

Figure 6. Multifidelity search path and isocontours 
of the high-fidelity Rosenbrock function. 

Figure 7. Low-fidelity subset of multifidelity search 
path with isocontours of the low-fidelity 
Rosenbrock function. 

To further demonstrate the method on a problem exhibiting more than one local optimum, we considered 
the following dual optimum problem, constructed by smooth-symmetrizing the Rosenbrock function 
about the origin as follows: 

 
h x 1 , x 2 =  . f  x 1 , x 2  1− . f −x 1 ,−x 2

 =
1
2  tanh [20 x1x 2]1 

 (27)

In Eq. (27) f  designates either f HF  or f LF  as appropriate.

As in the previous example, the initial design consists of the four corner points ( x1 =±2 , x2 =±2 ), 
only one of which is evaluated at the high-fidelity level.  

Figure 8 shows the multifidelity search path obtained by MFSRBO with an assumed 3/2 cost ratio and an 
assumed  0 = 0.01 .   As in Figure 6, the small symbols in the figure represent the results of low-fidelity 
analyses, and the large symbols correspond to high-fidelity analyses.  It is noteworthy that, regardless of the 
fidelity at which they are calculated, the accumulated designs find both optima of the high-fidelity function, 
h HF .  

The convergence history is illustrated in Figure 9, which depicts in semi-log scale the values  hHF  x1 , x2   
of the high-fidelity infills in order of appearance.  In order for the optimization to be able to both explore the 
design landscape and exploit the narrow minima, it is advantageous to relax the metamodel stiffness (i.e., 
increase   (Section 4.2.2.1) or i  (Section 4.2.2.2)) as the design progresses.  It its present 
implementation, this adaptivity is based on a simple, heuristic algorithm.  This algorithm increases the i  
parameters by a small factor 

 i
NEW = 11 i

OLD  (28)
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anytime the rank of the linear model design matrix X recedes below a given percentage of its full rank: 

 
rank X 

n
≤ 2  (29)

For example, the results of Figures 8 and 9 were obtained using 1 = 0.11  and 2 = 0.94 .

Figure 8. Multifidelity search path superimposed 
with isocontours of the high-fidelity 
symmetrized Rosenbrock function. 

Figure 9. History of high-fidelity infills corres-
ponding to the mulitifidelity optimization 
search path shown in Figure 8.

5.2.3  AEROELASTIC WING DESIGN PROBLEM

Two aeroelastic wing design problems were considered as part of this investigation.  The first, designated 
“baseline problem,” consisted of an aspect ratio 10 unswept rectangular or slightly tapered wing designed 
for minimal drag under load.  The second problem, referred to as the “UAV wing design,” was aimed at 
maximizing stability and was characterized by the incorporation of multiple constraints and a noisy 
objective function.

5.2.3.1   Baseline problem

A baseline problem was defined for the purpose of developing and demonstrating the MFSRBO approach 
and its ability to represent and integrate information from each discipline and model.  Computational fluid 
dynamics (CFD) and computational structural mechanics (CSM) were initially targeted as examples of 
high-fidelity models for the two interacting disciplines (fluids and structures).  However, the practical 
realities of the Phase I time frame and budget focused our attention instead on the following analysis 
methods and fidelity levels (see Section 4.4):

Table 8.   Overview of computational methods used.

MODELS Fluids Structures

High 
Fidelity

OPTMIS/MISDL (NEAR), intermediate-level aerodynamic prediction code 
based on panel methods and other classical singularity methods enhanced 
with models for nonlinear vortical effects.  Applicable to subsonic and 
supersonic flight vehicles including aircraft, UAVs, missiles, and rockets.

CNEVAL FEM method; 
provides weights, 
displacements, stresses, and 
modal frequencies

Low 
Fidelity Lifting line theory, supplemented with induced drag calculation.

Low degree-of-freedom 
version of the CNEVAL FEM 
model.

- 25 -



Nielsen Engineering & Research, Inc. – DoD STTR Topic AF08-BT03 – Contract FA9550-09-C-0135 Final Report
“Development of Multidisciplinary, Multifidelity Analysis, Integration and Optimization of Aerospace Vehicles”

An analysis of baseline problem candidates led to the selection of the minimum drag design of a wing subject 
to minimum lift and static aeroelastic constraints as the focus of the Phase I demonstration.  This benchmark 
problem is derived from Robinson et al. (2006).  It seeks to minimize the induced drag C D ,i  by changing the 
pre-load twist distribution (parameterized here by the root chord angle of attack 0  and its spanwise first and 
second derivatives, d /dy  and d 2/dy2 ).  Two additional variables are introduced: the root chord 
maximum structural thickness 0 ≝ TH  y = 0 , and the taper ratio  ≝ ctip /c root  of the unswept flexible 
wing.  The wing span is maintained constant, ymax = 5 ft , and the wing area is kept fixed at S = 5 ft 2 .  

The induced drag was minimized, subject to minimum lift and maximum stress constraints as follows:

minimize 
{0 ,d /dy ,0 ,}

CD ,i

subject to C L ≥ W payloadW wing  /q∞ S ref 

VM / VM ,max 0.5

(30)

where VM  is the Von Mises stress, W  is weight, q∞  is dynamic pressure, and Sref  is the wing reference 
area.  For this investigation, the freestream angle of attack is zero, the freestream Mach number is 
M∞ = 0.2 ,  the dynamic pressure is q∞= 40.76 psf , and the assumed payload is W payload = 75 lbs .

Figure 10. Low- and high -fidelity static aeroelastic deformation prediction.  (Top: aerodynamic 
loading (planform view).  Bottom: streamwise view of combined wing twist and 
bending (not to scale)).

A typical comparison of low- and high-fidelity analyses11 is given in Figure 10,12 corresponding to 0 = 7o , 

d  /dy =−0.8o ft−1 , d 2/dy2 = 0o ft−2 , 0 = 0.045 ft , and  = 0.8  using the material and cross-
sectional properties shown in Section 4.4.   

One-, two-, three-, and four-dimensional variations on the minimum drag aeroelastic wing design problem 
were investigated as part of this effort.  To better understand how the optimization method performed on 
these cases, let us consider the two-dimensional results (Table 7, subcase 2) in which a fixed root chord 
maximum thickness 0 = 0.04 ft  and fixed taper ratio  = 1  are used.

11  The cost ratio between high- and low-fidelity analyses was 5:1
12  “σ” in Figure 10 denotes the ratio VM / VM , max
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Figure 11. Sample multifidelity search path for two-
dimensional aeroelastic wing design 
problem.

Figure 12. A different instantiation of the problem 
solved in Figure 11 (different initial 
conditions).

 

Figures 11 and 12 provide two examples of the MFSRBO search path when the optimization is initiated 
from two randomly chosen Latin Hypercube design of experiments, each including one high-fidelity and 
three low-fidelity solutions (see Table 9).  

Table 9.  Listing of initial conditions

Point 
Number

Initial Design Used in Figure 11 Initial Design Used in Figure 12

0 
o d  /ds  o Fidelity level 0 

o d  /ds  o Fidelity level

1 8.405 -2.453 Low 3.021 -9.752 High

2 0.784 -4.876 Low 7.487 -1.617 Low

3 4.690 -6.679 High 9.019 -6.821 Low

4 5.851 -8.127 Low 0.934 -3.438 Low

The following computational analysis uncertainties ( 0  in Eq. (8)) were used uniformly for the OPTMIS 
outputs: 

Table 10.  OPTIMS output uncertainties
CL CD,i Wwing (lb) σVM/σVM,max

0 0.0002 0.002 0.03 0.02

The results of Figures 11 and 12 are shown as a function of the two design variables 0  and d  /ds , where 
s  is the nondimensional span variable, s = y / ymax .  The background contour lines represent the high-

fidelity primary (unconstrained) objective, C D ,i .  The large symbols denote high-fidelity analyses, while the 
small symbols represent the low-fidelity analyses.  Each symbol is colored based on the objective function, 
which is the induced drag C D, i , modified with penalty functions for violating lift and/or stress constraints 
(themselves indicated by dashed lines).   Specifically, the constraints are incorporated into the objective 
function using the following penalty formulation (using the previous values for W payload , q∞  and Sref ): 
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f = CD , i 10 .max [75W wing

40.76 ×5 − C L ,0 ] 20. max [ VM

VM ,max

− 0.5 ,0]   (31)

where W wing  is the structural weight of the wing, expressed in pounds.  The process of maximizing the 
multifidelity expected improvement function (11) involves calculating (15), which requires keeping track of 
the current best effective solution x*= [0

* ,d  /dy* , 0
* ,* ] , and the ability to estimate the objective 

function f  and its variance s 2  at any design point x  for any level of fidelity.  

A more elegant way of handling the constraints in a consistent and fully probabilistic manner is described in 
Forrester et al. (2009).  The detailed implementation of this method applied to the present problem is 
described in Appendix C.

Figure 13. Quantification of multifidelity vs. high-fidelity-only optimization performance via aggregated 
cumulative distribution functions.  The primary objective, CD,i is shown on the horizontal 
axis.  The vertical axis is the numerically computed probability of finding feasible high-fidelity 
solutions exceeding the target on the x axis.

Statistical Results

It is important to realize that, due to the inherent coupling between the optimization path and the sequential 
radial basis function metamodel being created at the various stages of the optimization, the results depend on 
the initial conditions of the optimization (this is true whether using multifidelity or single fidelity 
optimization).  Figure 12, for example, presents a different data profile for the same nominal problem as 
Figure 11, the only difference being the initial conditions.  

- 28 -



Nielsen Engineering & Research, Inc. – DoD STTR Topic AF08-BT03 – Contract FA9550-09-C-0135 Final Report
“Development of Multidisciplinary, Multifidelity Analysis, Integration and Optimization of Aerospace Vehicles”

For this reason, when comparing performance metrics, it is particularly important to expand results such as 
Figures 11 and 12 and to consider ensembles in a statistical sense in order to draw meaningful conclusions. 
Thus, using multiple realizations with random initial conditions based on a Latin Hypercube design of 
experiments, optimization results were aggregated and analyzed as a group.  When comparing multifidelity 
vs. high-fidelity-only optimization, care must also be exercised so that the exact same design variables are 
used in the initial design.  

The details of this aggregate analysis are as follows.  The candidate designs harvested as a result of each 
optimization are first filtered so that only the high-fidelity (HF) solutions that do not violate the constraints 
are considered.13  These HF nonviolators are then sorted based on the primary objective (low C D , i  in the 
present case).  Aggregate performance profiles collected in this manner can then be analyzed in terms of the 
induced drag cumulative distribution function (CDF) of the wing designs.  The example shown in Figure 13 
corresponds to 8 realizations of the three-dimensional optimization (Table 7 subcase 3).  The stopping 
criterion was based either on failure to improve the EI function (Eq. (11)), or reaching an imposed practical 
maximum of 24 high-fidelity solutions.  The optimal designs for this case are given in the table below:

Method 0 
o d /dy  o ft−1 0  ft  C L C D , i W wing lbs  VM

MFSRBO 6.624 -0.704 0.0392 0.4624 6.484 x 10-3 18.87 0.442
HF-only 6.418 -0.603 0.0384 0.4643 6.542 x 10-3 18.64 0.471

Figure 13 shows that, by using multifidelity optimization, there is, for example, a 37% probability of 
achieving a drag coefficient less than 0.01, versus less than 4% with high-fidelity optimization only.  Thus, 
for a given computational budget, there is an order of magnitude greater probability of finding/approaching 
the high-fidelity optimum by using multifidelity optimization.14  

Neglecting, for the sake of simplicity, the cost of the low-
fidelity analyses and the cost of the optimization 
calculations per se, the average ratio of the cumulative 
distribution functions provides an indication of the relative 
performance of these methods.  Let us define the CDF area 
ratio as the ratio between the areas under the CDF curves 
(Figure 13) for C D ,i ≤ 0.01 .  

Figure 14 shows the CDF area ratio as a function of the 
search space dimensionality of the problem.  The three- and 
four-dimensional cases are believed to be more typical of 
the expected performance ratio.  Our observations suggest 
that the replicate-deterrent term (13), may have had an 
important effect in the lower dimensional experiments, due 
to the effectively higher point density in those cases.  The 
one-dimensional case was obtained by varying 0  only. 
(The so-called 1.5-dimensional case represents a case 
where the constraints were such that only a narrow sliver of 
feasible solutions existed in the 2-D space, thus making the 
space effectively quasi-one-dimensional).  While limited in 

scope and strictly empirical, the results of Figure 14 suggest the possibility that the MFSRBO method may 
be increasingly beneficial as the dimensionality of the problem increases, although this question will be left 
for future research.

13  In this study, this was typically repeated for 8 to 16 realizations.
14  This is consistent with the prior MFSKO experience of the OSU members of our Team, which suggests 

dramatic benefits when the cost differential is high and the systematic errors are small.
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5.2.3.2   UAV wing design

The baseline problem described above was extended to the case of an aeroelastic swept (UAV-type) wing at 
M ∞ = 0.2 .  The wing planform is a modified version of the European SACCON stability and control 

vehicle15 with identical span and wing area.  As in Table 7 subcase 2 above, the design variables are the twist 
distribution, characterized by 0  and d  /ds .  However, this time, the design objective is to maximize the 
pitch stability −dC m /d , subject to minimum lift, maximum stress, and angular trim constraints as 
follows:

minimize 
{0 ,d /dy }

dC m/d 

subject to C L ≥ W payloadW wing /q∞ Sref 

VM / VM ,max 0.55

∣Cm∣ 0.002

(32)

where Cm  is the pitching moment about the root half chord location.  

An example comparison of low- and high-fidelity results obtained using OPTMIS is shown in Figure 15,16 
corresponding to 0 = 18.5o , d  /dy =−4.3o ft−1  and W payload = 75 lbs  for an isotropic material with 
self-similar cross-section (see Section 4.4) and a spanwise-uniform maximum thickness of 0 = 0.025 ft .  

Figure 15. Low- and high-fidelity static aeroelastic deformation of UAV wing. 
(Left: planform view of loading.  Right: perspective view of wing twist 
and bending (not to scale)).

The optimization methods and postprocessing metrics were identical to those used in Section 5.2.3.1. 
Figure 16 provides an illustration of the multifidelity sequential radial basis optimization search path for a 

15  NATO RTO, AVT-161 Assessment of Stability and Control Prediction Methods for NATO Air & Sea Vehicles. 
16  “σ” in Figure 15 denotes the ratio VM / VM , max
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given instance of a Latin Hypercube design of experiments including one high-fidelity and three low-fidelity 
solutions as the initial conditions.  The flooded contours represent the primary objective, dCm/d , which is 
noisy, due in part to finite differencing and to Cm  being itself a sensitive quantity.  As before, the large 
symbols denote high-fidelity analyses, while small symbols are used for low fidelity.  Each symbol is colored 
based on the objective function, which is the stability derivative dC m/d  , augmented with penalty functions 
for violating either the lift, trim, or stress constraints.  Specifically, the constraints are incorporated in the 
objective function using the following penalty formulation (using the previous values for W payload , q∞ , 

and S ref = 4.15 ft2
): 

f =
dC m

d 
 10. max [∣C m∣−0.002 , 0]

 10 . max[75Wwing

40.76 ×4.15 − C
L
, 0 ]

 20. max[

VM

VM , max

− 0.5 , 0]
  (33)

where W wing  is the structural weight of the wing, expressed in pounds.  

Figure 16.   Sample multifidelity search path for UAV aeroelastic wing design problem.

Finally, Figure 17 compares the aggregate cumulative distribution functions for the multifidelity and single 
fidelity optimizations, each based on eight random realizations.  The resulting CDF area ratio, defined as the 
ratio between the areas under the CDF curves (Figure 17) for dCm /d ≤−0.0027 , suggests 4:1 odds in 
favor of multifidelity optimization, versus high-fidelity only optimization.
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Figure 17. Quantification of multifidelity vs. high-fidelity-only optimization performance via aggregated 
cumulative distribution functions.  The primary objective, dCm/dα is shown on the horizontal 
axis.  The vertical axis is the numerically computed probability of finding feasible high-fidelity 
solutions exceeding the target on the x axis. 

6.  DISCUSSION
This report has explored the use of radial basis functions instead of Kriging models in sequential 
multifidelity optimization.  In adapting the methods, we have addressed at least three types of 
unavoidable challenges relating prediction, error estimation, and the expected improvement function. 
This investigation explored proposing two types of metamodeling approaches which are cascading (the 
most direct extension of Kriging-based methods with convergent prediction) and augmented 
dimensionality (which offers advantages for data starved cases). 

Perhaps the greatest challenge was developing a comprehensive estimate of uncertainty corresponding to 
the approximate Bayesian intervals for Kriging functions.  They are approximate because they are based 
on parameter estimates.  Here, four types of approaches were considered with numerical results based on 
assumed errors and simple cross-validation.  Finally, two alternative formulations for the expected 
improvement function were described because of the computational challenge of estimating correlation 
for the radial basis function case.
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7.  CONCLUSIONS AND FUTURE WORK
The preliminary numerical results indicate that methods based on radial basis functions can compete with 
Kriging methods in relation to efficiently and repeatedly identifying global optimal solutions.  As a result, 
the radial basis functions might seem to be preferred for the following reasons:

• Reduced computational overhead – Radial basis function estimation does not require likelihood 
minimization since we have a closed form for the coefficient estimates.  Thorough and accurate 
likelihood optimization is a difficult computational challenge.  The efficiency increase through 
eliminating one of the two optimizations per iteration (the other is expected improvement 
optimization) can enable many new applications of related methods.  These included so-called 
“on-line” or automatic optimal decision-making.  For example, data can stream in from sensors or 
simulations running in parallel and be quickly integrated for determining optimal settings and 
requests for additional inputs. 

• Improved numerical stability – In the prior computational work of the OSU members of our 
Team, generated by Huang, Allen, Notz, and Miller (2006), we encountered several crashes from 
numerical inversions in deriving numerical results.  These problems likely were not fully 
understood by us.  However, our preliminary conclusion was that the errors occurred because of 
the spacing off design points near each other and on a lattice and could not be avoided through 
the use of singular value decomposition-based inversion.  By contrast, the radial basis function 
fitting is based on linear model estimation which is very stable using singular value 
decomposition (Press, Teukolsky, Vetterling, and Flannery, 2007).

• No stationarity assumption – In the Huang, Allen, Notz, and Miller method there was a check 
for violation of the assumption that systematic errors have zero expected mean.  The methods 
included a potentially expensive checking and adjustment process which was not fully reflected 
in the measured computational performance.  The methods based on radial basis functions seem 
to require no comparable steps which could offer computational advantages.

Table 11 qualitatively compares alternative methods in relation to modeling approach, computational 
overhead, available convergence results, and test performance.  The tentative conclusion is that further 
hybrid methods based on radial basis functions are a promising topic for research.  The developed 
methods will likely offer reduced modeling overhead, theoretical convergence results, and good test 
performance on numerical examples and real-world problems.

Table 11. Overview of alternative methods. *Developed in this project.. **Proposed for future development.
Method Modeling Modeling Overhead Convergence Test Performance

SKO (Jones et al. & Huang, et al. #1) Kriging Likelihood Optimization Not-established Generally Global
SRBO* RBF LSE Not-established Competitive
MFSKO (Huang. Allen et al. #2) Kriging Likelihood Optimization Not-established Generally Global
Trust Region (Rodriguez, Renaud,…) Polynomial LSE Established Not Competitive
MFSRBO: Assumed Variance* RBF LSE Not-established Competitive
MFSRBO: Cascading model* RBF LSE Not-established Not studied
MFSRBO: PRESS* RBF PRESS Cross Validation Not-established Not studied
Simple Hybrid* RBF LSE Established Not Competitive
Hypothetical Future Hybrid Method** RBF LSE Promising Competitive

The research has also uncovered many remaining challenges. These include:

• Developing globally convergent, efficient, hybrid methods – The simple hybrid methods 
considered always converge to local minima and might likely converge to global minima under 
the assumptions considered.  Yet, their computational performance has not been studied and is 
likely not competitive.  Also, the assumptions of deterministic responses and continuously 
adjustable fidelity levels might need to be relaxed.  It is possible that new classes of hybrid 
methods will offer competitive computational performance and proven convergence.
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• Error estimation including bias – The errors used in the proposed MFSRBO explored in our 
computational studies are based on regression variance errors only.  This makes their 
interpretation difficult in deterministic cases, i.e., cases with perfect repeatability error or σ = 0. 
In such cases, the intervals do not directly correspond to any interpretable physical quantity in the 
corresponding problem and performance of the methods likely is degraded.  Developing new 
methods based on measures of bias such as regression Cp or diagnostics proposed in Tseng (2007) 
is a promising avenue of research. 

• Measuring computational overhead – It is clear that linear model estimation is computationally 
superior to likelihood estimation in Kriging models.  Yet, so far we have not measured the 
computational advantages.  Also, we have not tuned the methods to the point at which the 
overhead is minimal and comparable to standard nonlinear programming methods.  The 
promising results from the radial basis function methods here suggest that such performance is 
achievable.

• More thorough computational comparisons – There are several cases in which further 
comparisons can shed light on the conditions under which radial basis function methods are 
competitive or superior to methods based on Kriging models and/or trust region methods.  Further 
comparisons are possible, particularly including discrete or categorical factors.

• Parallelizing the methods – One promising area that we considered was the possibility to 
parallelize function evaluations.  For example, it is advantageous to launch one slow, high-
fidelity simulation simultaneous with several low-fidelity simulations. The structure of related 
methods lends itself nicely to parallel processing with its significant computational advantages.
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LIST OF ABBREVIATIONS / ACRONYMS / SYMBOLS

AFRL Air Force Research Laboratory
AR Aspect Ratio (total span over chord)
arg Argument
c Chord length
C Cost
CD,i Induced drag coeffient
CDF Cumulative Distribution Function
CDL Cross-Disciplinary Link
CFD Computational Fluid Dynamics
CL Lift coefficient
Cm Pitching moment coefficient
CSD Computational Structural Dynamics
CSM Computational Structural Mechanics
d Design space dimensionality
DIRECT Optimization method developed by Gablonsky et al. (2001)
DOE Design of Experiments
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EGO Efficient Global Optimization
EI Expected Improvement
f Function
F i Force vector

FEM Finite Element Method
g Constraint
GCV Generalized Cross Validation
HF High-Fidelity
KKT Karush-Kuhn-Tucker
KRG Kriging-based regression
LER Leading Edge Radius
LF Low-Fidelity
LSE Least Squares Estimation
MAV Micro Air Vehicle
max Maximum
MDA Multidisciplinary Design Analysis
MDA Multidisciplinary Design Optimization
MFSKO Multifidelity Sequential Kriging Optimization
MFSRBO Multifidelity Sequential Radial Basis Optimization
min Minimum
MLS Moving Least Squares
N[μ,σ] Random process with normal distribution of mean μ and standard error σ
NEAR Nielsen Engineering & Research
obj Objective function
OSU Ohio State University
P[ ] Probability
Param. Parametric
PRESS Prediction Error Sum of Squares
PRG Polynomial regression
qParam. Quasi parametric
q∞ Freestream dynamic pressure
RBF Radial Basis Function
ref Reference quantify
RS Response Surface
RSS Revised Simplex Search
S Area
s(f) Standard error of function f 
SKO Sequential Kriging
SPSA Simultaneous Perturbation Stochastic Approximation
SRBO Sequential Radial Basis Optimization
STTR Small Business Technology Transfer
SVD Singular Value Decomposition
SVR Support Vector Regression
TH Maximum structural thickness at a given span location
ui Velocity vector

UAV Unmanned Aerial Vehicle
Var Variance
W Weight
x Streamwise coordinate
x Design vector
X Design matrix
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y Spanwise coordinate
Y Dependent variables data vector
z Normal coordinate
^ Estimated value
* Effective best solution
α Angle of attack
αo Root chord angle of attack
γ Metamodel parameter
i Circulation

ΔCp Differential pressure coefficient
Λ Taper ratio
ρ Fluid density
σVM Von Mises stress
θo Root chord maximum structural thickness
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APPENDIX A – CORRELATION COEFFICIENT 
COMPUTATION

The objective function of the optimization is the multifidelity expected improvement function driver 
EI(x,l)  (see Eq. (11)).  At any given point x within the optimization search, the fidelity-maximization of 
EI(x,l) results primarily from the balance between the cost ratio α3  l  and the local correlation α1 x , l   

between fidelity levels l and m, i.e., α1 x , l  = corr [ f lx  , f m x ] .  This term is key to the functioning 
of the method: whenever lower and higher fidelity estimates are correlated, the optimization favors the 
lower cost function, and where they are sufficiently uncorrelated,17 the high-fidelity estimate takes 
priority.

In the augmented dimensionality version of our method, the correlation coefficient α1 x , l   
is computed 

numerically as the correlation coefficient between two data streams.  The two data streams consist of 
local sets { f l  x 0  , . . . , f l  x q }  and { f m  x 0  , . . . , f m  x q  } , where {x 0 , . . . , x q }  denotes a set of 
points in the immediate neighborhood of x, and f is the metamodel response.  In practice, one must 
decide on what these neighbor points should be (scale of coverage, spatial pattern, and number).  

Our implementation “piggy backs” on the search stencil of the steepest ascent, hill climbing algorithm 
used in NEAR RS (Section 4.3.6).  In its simplest form (but not the most efficient), the stencil consists of 
a center point ( x 0 = x ) and the vertices of a hypercube of size L, centered on x.  In our search strategy, 
L is initiated at some user-prescribed initial value around the random seed points.18  The stencil is then 
interrogated at each of the vertices.  If an improvement is possible the search location is moved to the 
vertex corresponding to the best improvement (steepest ascent), leaving L unchanged.  If, on the other 
hand, there is no improvement at any of the vertices, then the pattern remains centered on x0  and L is 
cut in half.  The algorithm goes on until reaching a maximum user-prescribed number of recursion levels 
(effectively defining the maximum resolution of our search).

For the purposes of computing the correlation coefficient, the local length scale L is a natural choice 
for defining the scale of coverage of the neighborhood set {x 0 , . . . , x q } .   In this study, a 
d - dimensional hypercube of size L/2 with w = 3 points per side was used for most of the cases, 
providing reasonably smooth estimates of the correlation coefficient.

17  (for a given cost ratio)
18  The random seed points are the initializations of the multistart method.
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APPENDIX B – CONVERGENCE CONDITIONS

Trust region augmented Lagrangian multifidelity methods have been proven to converge to local 
optima of the highest fidelity system (Rodriguez, Renaud, and Watson, 1998). Yet, their assumptions 
include that the systems are deterministic and that the fidelity level, ψ, can be continuously adjusted. 
In the context of multiple local minima they can be considered inferior since sequential optimization 
methods using global metamodels have been demonstrated on test problems to converge efficiently to 
the global optimum. 

The purpose of this system is to clarify the conditions used to prove the trust region convergence. As a 
result, reviewing the assumptions from Rodriguez, Renaud, and Watson (1998) clarifies the convergence 
criteria for hybrid methods. It also illuminates the conditions and issues for future, more efficient hybrid 
optimization method convergence. The notation was somewhat different than in proceeding sections. The 
relationship is clarified below.

k Lagrangian iteration
s approximate minimization iteration
i, j, l variable indices
m number of inequality constraints
n number of design variables
p number of equality constraints
f(x) objective function
g(x) inequality constraint vector
gj(x) j-th inequality constraint
h(x) equality constraint vector
hi(x) i-th equality constraint
rp penalty parameter
x design vector, dimension n
xl l-th design variable
xU upper bound vector, dimension n
xU

l l-th design upper bound
xL lower bound vector, dimension n
xL

l l-th design lower bound
B approximation of the Hessian
K constraints residual
S design space
β, β1, β2, k scalars
ε1, ε2 convergence tolerance
γ0, γ1, γ2, η, μ  trust region parameter
λ Lagrange multiplier vector, dimension m+p
λi i-th Lagrange multiplier
ρ trust region ratio
ψ fidelity control
||.|| Euclidean norm

Gradient operator with respect to design vector x
P[y(x)] Projection operator; projects the vector y onto the set of feasible directions at x
Δ trust region radius
Δx step size
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Given minimization problems, authors made several assumptions as follow:

Min: f(x) (34)
Subject to
hi(x) = 0, i = 1, …, p,  : equality const (35)
gj(x) ≥ 0, j = 1,…,m, : inequality const. (36)
xL

l < xl ≤ xU
l, l = 1,…,n. : bounds (37)

which is equivalent to Eq. (10) using:

fm(x,λ,rp) = f(x) + Σi=1,…,p [λihi(x) + rphi(x)2] + Σj=1,…,m[λp+jΨj(x) + rpΨj(x)2] (38)

In terms of these definitions, the nine key assumptions are as follows. It is not clear whether all nine are 
really needed and they relate generally to bounds on the roughness of relevant functions.  Notes follow 
each assumption.  Overall, these assumptions might be considered relevant to many types of modeling 
problems that do not involve hits or misses of moving components or other forms of highly discontinuous 
physical behaviors.

AS1. Design space, S, has a nonempty interior and compact, i.e., it contains its boundary.

AS2. Objective function (f), inequality constraints (gi), and equality constraints (hi) are twice continuously 
differentiable on an open set containing the design space S.

AS3. The objective function (the augmented Lagrangian function), , satisfies a Lipschitz condition. 
In words, the gradients are bounded.

AS4. The feasible set defined by the inequality constraints, equality constraints, and upper and lower 
bounds is nonempty.

AS5. Trust region ratio, ρS, → 1 as trust region radius, ΔS  → 0 or fidelity control, ψ → ψmax.
Trust region “ratio” is as follow by the authors, s is the iteration counter for the number of 
approximate augmented Lagrangian minimizations. If ρS ≤ 0, the approximation is bad and the 
trust region radius, ΔS should be reduced. If ρS ≥ 1, the approximation is also bad but the direction 
is right. If ρS ⊂ (0, 1), the radius can be kept unchanged, reduced, or increased based on how 
close to 0 or 1 it is. 

AS6. Inequality constraint vector, g and equality constraint vector, h satisfy the Kuhn-Tucker constraint 
qualification or the modified Arrow-Hurwicz-Uzawa constraints qualification at any local minimum.

 KKT constraint qualification – i) ACQ(Abadie constraint qualification) – the tangent cone of 
a feasible set at a feasible point x* is the linearized cone at x* in the tangent cone, ii) 
LICQ(Linear independence constraint qualification) – the rows of Jacobian matrices for 
inequality and equality constraints are linearly independent (from a note of The Karush-
Kuhn-Tucker Theorem, by Moritz Kuhn, 2006)

AS7. The Jacobian matrix of the active constraints has full rank at any limit point x* of the sequence {xk} 
considered. 
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AS8. The set M  {{x|Φ(x) < Φ(x0)}  {xL≤ x ≤ xU}} with x0 satisfying xL
i ≤ xi ≤xU

i (i = 1, …, n) is not 
empty.

 It is necessary that the solution of the optimization problem be nontrivial. 

AS9. Approximation of Hessian, || Β || ≤ an assumed constant. 
 It is necessary to assure that the Hessian (containing the second derivatives) approximation 

remains uniformly bounded.
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APPENDIX C – DISCUSSION ON THE HANDLING OF 
CONSTRAINTS

The minimum induced drag design considered in the baseline problem of Section 5.2.3.1 exercised 
structural and aerodynamic constraints.  Specifically, the following problem was solved:

minimize 
{0 , d  /dy , 0 ,}

CD ,i

subject to C L ≥ W payloadW wing /q∞ S ref 

VM / VM ,max 0.5

(39)

The constraints were incorporated into the objective function using a simple penalty method, specifically 
( W payload = 75 lbs , q∞= 40.76 psf  and Sref = 5 ft2 ): 

f = CD , i 10 .max [75W wing

40.76 ×5 − C L ,0 ] 20. max [ VM

VM ,max

− 0.5 ,0]   (40)

where W wing  is the structural weight of the wing, expressed in pounds.  The process of maximizing the 
multifidelity expected improvement function (11) involves calculating (15), which requires keeping track of 
the current best effective solution x*= [0

* ,d  /dy* , 0
* ,* ] , and the ability to estimate the objective 

function f  and its variance s 2  at any design point x  for any level of fidelity.  

Each independent metamodel surrogate for CD ,i , C L , W wing , and VM /VM ,max  yields an estimated 
value (denoted with a  ^ ) and standard error s .  The approach used in this work considers the primary 
objective CD ,i  as probabilistic.  However, for simplicity, the constraints were treated as deterministic. 
Thus 

f = C
D , i

 10 .max [75 W wing

40.76 × 5 − C
L
,0 ] 20. max [ VM


VM ,max

− 0.5 ,0]   (41)

but 

s  f  = sCD ,i   0 . sC L  0.s W wing  0 . s
VM

VM ,max

   (42)

A better, fully probabilistic, approach which takes into account the probability of constraint violation is 
described in Forrester et al. (2009), in which the expected improvement is replaced by the expectation of 
improving of the objective f  while simultaneously being a feasible design: 

E [max  f m x
* − f m x  ,0  ∩ {g  gmin} ]   (43)

In (43), g  represents a constraint and g  gmin  represents the condition for feasible designs.  In the case 
where primary objective and constraint are uncorrelated, the expectation (43) can be expressed as a 
simple product of independent probabilities: 

E [max  f m x
* − f m x  ,0  ∩ {g  gmin} ] = E [max  f m x

*− f m x  ,0 ] × P [ g  gmin ] (44)
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In this fully probabilistic approach, the penalty-based objective function f  in Eq. (40) is simply replaced by 

f = CD , i , E [max  f m x
* − f

m
 x  ,0 ]  is calculated according to (25) using sm x = smCD , i ;x  , 

and

P [ gm  x  gmin ] = ∫
gmin

∞

  y− gm  x ; sm g ; xdy

=
1
2 [1  erf  gm x −gmin

2 .sm g ; x ] ≝   gm x−gmin ; sm g ; x 

  (45)

Thus, in the above example, and provided the above-mentioned independence assumptions hold, (25), 
(41) and (42) are replaced by 

E [max  f m x
*
− f m

p  x  ,0  ∩ {g  gmin} ] =

[  CD , i
m
 x* − CD , i

m
 x  .  CD, i

m
 x* − CD ,i

m
 x  ; sm CD , i ;x 

                 smCD , i ; x  .  CD , i
m
 x* − CD , i

m
 x ; smCD , i ;x ]

× [ 75 −  C Lx 
W wing x

40.76 × 5 
m
;sm2 C L ; x

s
m
2 W wing ;x 

 40.76 × 52 ]
× [  VM x 

VM,max
m− 0.5 ; sm  VM

VM,max

; x ]

  (46)

which explicitly takes into account the estimated variances smC D ,i ;x  , smC L ;x  , smW wing ;x  , 

and smVM /VM,max ;x  for all the dependent variables participating in either the objective or the 
constraints.
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